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Abstract. Single-particle response functions for liquid D2 and H2, obtained from previous
inelastic neutron scattering measurements, are compared with an exact quantum calculation for D2
and a Wentzel–Kramers–Brillouin (WKB) model for D2 and H2. The exact and WKB calculations
both provide satisfactory descriptions of the experimental response function of these fluids over a
wide range of momentum and energy transfers, which spans from the roto-vibrational excitations
up to the molecular dissociation regime.

1. Introduction

The dynamics of single particles and the study of related quantities, such as the mean kinetic
energy, 〈Ek〉, and momentum distribution, n(p), are of fundamental scientific interest in a
variety of systems: systems of atoms and molecules, in solid and liquid phases, strongly
interacting electron systems, and systems of nucleons in atomic nuclei [1]. The most direct
experimental technique which probes single-particle dynamics in condensed matter physics is
known as deep inelastic neutron scattering (DINS), or neutron Compton scattering, in analogy
with the traditional Compton scattering of photons from electrons. The DINS technique,
employing incident neutrons with eV energies, allows one to access high energy, h̄ω > 1 eV,
and a wide range of momentum, 30 Å−1 < q < 150 Å−1, transfers. Within the limit of
the impulse approximation [2] (IA), the experimental response function F(y) (y is the West
scaling variable) [3] is directly related to n(p) for the target system in the initial state. In the
case of diatomic molecular systems, the IA relies on two basic assumptions: (1) the scattering
is totally incoherent when q � 2π/d, where d is the average intramolecular distance; (2)
the struck nuclei recoil under free dynamic conditions when h̄ω greatly exceeds the energy
scale of internal excitations of the molecule. However, at the intermediate experimentally
accessible values of q (and h̄ω), deviations from the IA can occur, even when the incident
neutron energies are larger then 1 eV, as has been discussed in detail in references [4–7].

The aim of the present work is to investigate the q-dependence of the response function,
F(y, q), and its asymptotic limit at high q, F(y), for fluid H2 and D2. In a previous paper [5]
the experimental response functions of these two fluids have already been compared with the
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results of an approximate calculation, employing a WKB semiclassical approximation [6]. This
approach achieved a satisfactory physical description of the experimental response function
over the whole range of q explored and showed a continuous transition from a distinct roto-
vibrational excitation regime to a free-particle one, as q and ω increased [5].

In the present paper, the above study will be completed by calculating F(y, q) using exact
eigenfunctions for the relative motion of atoms within these molecules, to check the ability
of the exact calculation to produce a description of experimental data and to test the WKB
approximation against the exact calculation.

2. Experimental procedure and theory

The experimental measurements on fluid H2 and D2 were performed [5] using the inverse-
geometry spectrometer eVS, operating at the ISIS Spallation Neutron Source (UK) [8], where
incident neutrons, with energies ranging from 1 eV to 10 eV, are available. A nuclear gold foil,
strongly absorbing neutrons at the resonance energy E0 = 4911 meV in an energy window of
HWHM �E0 = 91 meV, is placed in the secondary-neutron flight path and selects the final
energy of the scattered neutrons. The latter are recorded by lithium glass scintillation detectors.
The data span a wide region of ω and q with values of q at the recoiling peak, q̄, ranging from
q̄ = 28.2 Å−1 up to q̄ = 70.4 Å−1 (see table 1). Full details of the experimental set-up and
data-analysis procedure are presented in references [5, 8]. We recall that the measurements
for the D2 sample were made with it in a single state, ortho-D2, with practically just one kind
of internal molecular population (j = 0), and the data for H2 were for almost pure para-H2

(j = 0), with a para-H2 concentration of 96.2% and an ortho-H2 (j = 1) concentration of
3.8% [5].

Table 1. Values of reduced χ2 obtained for para-H2 from two different calculations: the
semiclassical approximation (WKB) and the intramolecular impulse approximation (IA). The left-
hand-side column reports the scattering angle 2θ , and the right-hand-side one represents q̄ (see the
text).

2θ (deg) χ2 (WKB) χ2 (IA) q (Å−1)

35.9 0.97 10.2 35.2
37.9 0.75 9.49 38.0
40.0 0.59 6.12 40.8
42.1 0.67 6.98 44.0
44.1 0.83 6.23 47.2
46.1 0.62 5.15 50.6
48.2 0.66 6.22 54.5
50.1 0.96 2.71 58.2

In a DINS experiment at high q, one can neglect the interference terms in the
inelastic differential cross section, coming from neutrons scattered by different diatomic
molecules [2], and because of the mainly isotropic nature of both the hydrogen and the
deuterium intermolecular potentials, it is possible to assume a complete decoupling between
intramolecular and intermolecular degrees of freedom [9]. Then the inelastic neutron cross
section can be written as a convolution of two terms:(

d2σ

d� dω

)
=

∫ ∞

−∞
dω′ Scm(q, ω − ω′)

(
d2σ

d� dω′

)
int

(1)

where Scm(q, ω) is the incoherent inelastic structure factor for the centres of mass of the
molecules and the other term is the single-molecule inelastic differential cross section,
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describing the scattering from an isolated molecule struck by a neutron. For high q, it is
appropriate to express Scm(q, ω) by means of the intermolecular impulse approximation [2],
in terms of the single-molecule momentum distribution, N(
k), which is generally assumed to
have a Gaussian shape [10] (k is the total-momentum of the molecule). For a molecule with a
Gaussian momentum distribution, Scm(q, ω) also has a Gaussian shape:

Scm(q, ω) = 1√
2πσ 2

s (q)
exp

{
−

[
ω − h̄q2/(4M1)

]2

2σ 2
s (q)

}
(2)

where

σ 2
s = q2

4M2
1

σ 2
p

with σ 2
p the variance [11] of N(
k), and M1 is the mass of the single atomic nucleus (H or

D). In a diatomic molecule, such as H2 and D2, because of the isotropy of the interatomic
potential, the internal spatial wave function, ψ(
r), can be factorized into radial and angular
parts, i.e. ψ(
r) = (1/r)uv,j (r)Yj,mj (r̂), where v is the radial quantum number and j, mj
are the rotational quantum numbers. Two distinct regimes for the molecule are possible:
(i) vibrational states, with the discrete index v of the bound molecule; and (ii) continuum
states of the dissociated molecule with v equal to the continuous molecular energy E (the
continuum states are degenerate in j ). The quantum number j determines the parity, P , of the
molecular internal state: P = (−1)j . Then the single-molecule inelastic differential cross
section can be written as [5](

d2σ

d� dω

)
int

= k
′

k

∑
j ′

∑
v′(E′)

∑
j,t

pj,t |a±
t |2|f0,j→v′(E′),j ′(q)|2δ(h̄ω − Ev′(E′),j ′ + E0,j ) (3)

where E0,j and Ev′(E′),j ′ are the single-molecule initial- and final-state energies, respectively,
andpj,t the statistical weights of the initial state (t being the total nuclear spin of the molecule);
|a+
t |2 and |a−

t |2 are the molecular squared scattering lengths, associated with inelastic transitions
between internal states of the same and opposite parity, respectively.

The molecular form factors |f0,j→v′(E′),j ′(q)|2, for the transitions from the initial to the
final states, can be expressed in terms of the radial wave functions alone:

|f0,j→v′(E′),j ′(q)|2 = (2j ′ + 1)
j+j ′∑

l=|j−j ′|

∣∣∣∣
∫ ∞

0
uv′(E′),j ′(r)jl(qr/2)u0,j (r) dr

∣∣∣∣
2

× |〈j, j ′, 0, 0|l, 0〉|2. (4)

The radial wave functions for the final states have been obtained in two distinct ways:
(1) using the WKB approximation; and (2) by an exact solution of the Schrödinger equation
for the relative motion of the two atoms in the molecule [5]. In both cases a Morse potential [9]
has been assumed to describe the intramolecular interaction. Values used for the potential
parameters are reported in reference [5]. The only relevant contribution to the matrix element
in a DINS process (equation (4)) comes from the range of r-values where the initial state,
u0,j (r) (with j = 0, 1 for H2 and j = 0 for D2), is significantly different from zero [6].
This fact allows one to consider, instead of the exact final radial eigenfunctions, the WKB-
approximated wave functions, able to reproduce the correct behaviour in that r-range. For the
exact numerical solution, the second-order radial Schrödinger equation

1

r2

d

dr

(
r2 dU

dr

)
= −A[E − V (r)]U(r)
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has been split into a system of two first-order equations,

dU

dr
= W
r2

dW

dr
= −Ar2[E − V (r)]U(r)

which have been solved using a variable increment of the radial coordinate. Indeed the different
behaviours of the wave function inside the potential well, i.e. with an increasing number of
oscillations as the energy increases, and outside the potential well, i.e. with an exponential
decay, suggested the use of a variable increment in order to gain accuracy just inside the
potential well, where the wave function is not smooth. Particular care has been taken with
the determination of the energy eigenvalues, by checking the continuity of the logarithmic
derivatives of ‘inner’ and ‘outer’ solutions at both of the classical inversion points, r1 and r2
(where V (r1) = V (r2) = E). The results have been checked for numerical instabilities by
changing a control parameter for the variable increment of the radial coordinate.

It is useful to introduce the West scaling variable [3]:

y = M1

h̄2q

(
h̄ω − h̄

2q2

2M1

)
and to describe the scattering response function by the scaling function, F(y, q):

F(y, q) = h̄q

2M1

(
d2σ

d� dω

)
k

k′
2π

σc + σi
(5)

where σc and σi are the coherent and incoherent scattering cross sections, respectively, of the
single nucleus. Numerical values of σc and σi for H2 and D2, as well as of |a+

t |2 and |a−
t |2,

and the procedure employed for obtaining σ 2
p can be found in reference [5].

For each single detector, n, at a fixed angle there is a direct correspondence between q
and y, q = qn(y), and one can calculate F(y, qn(y)) along these kinematic curves. In order
to perform a comparison with the experimental data, one has to incorporate the contribution
coming from the finite resolution function, Rn(y) [7, 12]:

FR(y, qn(y)) =
∫ ∞

−∞
F(y ′, qn(y ′))Rn(y − y ′) dy ′. (6)

3. Discussion

In order to obtain insight into the changes occurring in the neutron scattering process as a
function of energy and q, the functions F(y, qn(y)) (see equation (5)) from the WKB approx-
imation are plotted for H2, in figure 1, at three distinct scattering angles, together with the
results from the intramolecular IA model. In figure 2 the same quantities plus F(y, qn(y))
derived from the exact calculation for D2 are plotted for three scattering angles. In both
figures we observe that F(y, qn(y)) shows, at the lowest angles (see figures 1(a) and 2(a)),
a well resolved roto-vibrational structure, more pronounced for the negative y-range, while
the response function calculated within the IA model exhibits a quite different form (see
figures 1(d) and 2(d)). On increasing the scattering angle (figures 1(b) and 2(b)), a roto-
vibrational structure can still be observed for H2, on the left-hand side of the recoil peak
(y < 0), while, on the right-hand side (y > 0), any structure disappears. Finally, in figures
1(c) and 2(c), exploring the highest-q region (see tables 1 and 2), only a smooth profile remains,
both on the left-hand side and on the right-hand side of the recoiling peak. We stress that, in
this case, dissociated states of the molecules start to play an important role in the scattering
process. From figure 2 it can also be noted that some differences appear between the results
obtained using the WKB approximation and from the exact calculation for the highest angles
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Figure 1. F(y, q) calculated using the WKB approximation for para-H2 at 17 K for the scattering
angles 2θ = 36◦ (a), 2θ = 50◦ (b), and 2θ = 65◦ (c). The response function at the top (d) is from
the IA. The response functions (b), (c), and (d) are each vertically shifted by 0.075 Å.
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Figure 2. F(y, q) calculated using the WKB approximation (full line) and from the exact
calculation (dashed line) for ortho-D2 at 20.7 K for the scattering angles 2θ = 39.9◦ (a),
2θ = 55.5◦ (b), and 2θ = 70.5◦ (c). The response function at the top (d) is from the IA. The
response functions (b), (c), and (d) are each vertically shifted by 0.075 Å.

of the D2 spectra. These discrepancies show the limit of the WKB approximation as regards
coping with final states with high j ′-values, as compared to the exact calculation. Indeed as
j ′ grows, due to the increasing centrifugal potential contribution, the classical turning points,
poorly described within the WKB, move towards r-values where the initial wave function is
significantly different from zero. These discrepancies can be better appreciated by comparing
the experimental and calculated FR(y, qn(y)) (see equation (6)). The latter have been fitted to
the experimental response functions in the y-range −20 Å−1–20 Å−1, using a normalization
constant as the only free parameter. In the case of H2, the experimental data were compared
only with the WKB and IA results. The reduced χ2-values obtained from these fits for both
fluids are listed in tables 1 and 2, where a satisfactory agreement between experiment and
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Table 2. Values of reduced χ2 obtained for ortho-D2 from three different calculations: the
semiclassical approximation (WKB), the intramolecular impulse approximation (IA), and the exact
calculation (EC). The left-hand-side column reports the scattering angle 2θ , and the right-hand-side
one represents q̄ (see the text).

2θ (deg) χ2 (WKB) χ2 (IA) χ2 (EC) q (Å−1)

32.1 1.28 7.03 1.22 28.2
34.7 1.42 8.40 1.30 30.7
37.4 1.30 9.52 1.54 33.4
39.9 1.18 3.46 1.16 35.9
42.5 1.32 5.01 1.31 38.4
45.1 1.30 4.17 1.20 41.1
47.5 1.80 2.96 1.41 43.6
50.1 2.01 2.49 1.55 46.3
55.5 1.29 2.58 1.32 52.3
58.0 1.50 1.78 1.22 55.2
60.6 1.58 1.83 1.31 58.2
63.1 1.27 1.05 1.04 61.1
65.5 2.09 1.20 1.17 64.2
68.0 2.29 1.30 1.79 67.2
70.5 2.11 1.33 1.16 70.4

calculations can be observed. In the case of D2, the experimental and calculated FR(y, qn(y))
are also plotted in figure 3 for three selected scattering angles. From this figure and from
table 2 we note that the exact calculation provides a quite good description of the experimental
data over the whole angular range. Furthermore, at the lowest values of q̄ (q̄ is the q-value
at the recoiling peak, i.e. at y = 0), a clear shift of the maximum of the recoiling peak from
y = 0 can be observed, which dies away as q increases (see figure 3(a)). The smoother shapes
of FR(y, qn(y)) obtained in figure 3, as compared to those of F(y, qn(y)) in figure 2, have to
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0.2
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Figure 3. Experimental (points) and calculated FR(y, q) for liquid deuterium at 20.7 K for the
scattering angles 2θ = 39.9◦ (a), 2θ = 55.5◦ (b), and 2θ = 70.5◦ (c); dashed lines are the results of
the WKB calculation, and full lines the results of the exact calculation. The resolution contribution
(dotted line) is also plotted in (a). The response functions (b) and (c) are each vertically shifted by
0.075 Å.
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be ascribed to the convolution of F(y, qn(y))with the experimental resolution, Rn(y) (plotted
in figure 3 as a dotted line for the lowest scattering angle). We stress that, as q increases, the
lineshape of the experimental response function in figure 3 reflects a gradual and continuous
transition from the roto-vibrational to the molecular dissociation regime, i.e. the superposition
of several roto-vibrational molecular excitations and, eventually at high q, a continuum of
dissociated molecular states, broadened both by the centre-of-mass motion in the fluid and by
the instrumental resolution.

4. Conclusions

DINS experiments on liquid ortho-D2 and para-H2 over a wide kinematic region have
been compared with theoretical calculations obtained with a Morse functional form for the
intramolecular potential. Although the excitation of several roto-vibrational molecular levels
occurs, no clear feature of distinct roto-vibrational peaks has been observed experimentally,
owing to the present limited resolution of the eVS spectrometer. The eigenfunctions for
the internal motion of the two nuclei in the molecule have been obtained within the WKB
approximation, or in exact form, by numerically solving the Schrödinger equation. Both
calculations satisfactorily reproduce the experimental data over the whole q-range explored,
without any free parameter apart from a normalization constant. The exact calculation performs
better at the highest values of q, and provides an improvement with respect to other models
previously proposed [4, 5, 7, 13].

In conclusion, the WKB approximation is simple and reliable at intermediate values of
q, while the IA model, employing plane waves for the final molecular states, is confirmed to
be an adequate description of the response function for a liquid system composed of diatomic
molecules only for very high values of q.
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